Inferring sparse Gaussian graphical models with latent structure
نویسندگان
چکیده
Our concern is selecting the concentrationmatrix’s nonzero coefficients for a sparse Gaussian graphical model in a high-dimensional setting. This corresponds to estimating the graph of conditional dependencies between the variables.We describe a novel framework taking into account a latent structure on the concentration matrix. This latent structure is used to drive a penalty matrix and thus to recover a graphical model with a constrained topology. Our method uses an l1 penalized likelihood criterion. Inference of the graph of conditional dependencies between the variates and of the hidden variables is performed simultaneously in an iterative em-like algorithm named SIMoNe (Statistical Inference for Modular Networks). Performances are illustrated on synthetic as well as real data, the latter concerning breast cancer. For gene regulation networks, our method can provide a useful insight both on the mutual influence existing between genes, and on the modules existing in the network. AMS 2000 subject classifications: Primary 62H20, 62J07; secondary 62H30.
منابع مشابه
Learning Latent Variable Gaussian Graphical Models
Gaussian graphical models (GGM) have been widely used in many highdimensional applications ranging from biological and financial data to recommender systems. Sparsity in GGM plays a central role both statistically and computationally. Unfortunately, real-world data often does not fit well to sparse graphical models. In this paper, we focus on a family of latent variable Gaussian graphical model...
متن کاملGaussian Process Structural Equation Models with Latent Variables
In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been wellstudied, inference in nonparametri...
متن کاملDiscussion : Latent Variable Graphical Model Selection via Convex Optimization
1. Introduction. We would like to congratulate the authors for their refreshing contribution to this high-dimensional latent variables graphical model selection problem. The problem of covariance and concentration matrices is fundamentally important in several classical statistical methodolo-gies and many applications. Recently, sparse concentration matrices estimation had received considerable...
متن کاملSparse plus low-rank graphical models of time series for functional connectivity in MEG
Inferring graphical models from high dimensional observations has become an important problem in machine learning and statistics because of its importance in a variety of application domains. One such application is inferring functional connectivity between brain regions from neuroimaging data such as magnetoencephalograpy (MEG) recordings that produce signals with good temporal and spatial res...
متن کاملInferring network structure in non-normal and mixed discrete-continuous genomic data.
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008